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An experimental investigation of asymptotic 
hypersonic flows 

By N. C. FREEMAN,? R .  F. CASH AND D.  BEDDER 
National Physical Laboratory, Teddington 

(Received 6 August 1963) 

Hypersonic flow past axisymmetric power-law bodies ( y ~ c  xm; wi = 0 , -l- 1 0 ,  1 4 )  1 3, 

i, 2 and 1) has been studied experimentally and a detailed analysis of the depen- 
dence of shock-wave shape on body shape made. 

Results indicate a continuous relationship between the exponent of the shock- 
wave shape and that of body shape over the range considered. 

1. Introduction 
I n  a recent paper (Freeman 1962)) the factors influencing the flow past blunt 

bodies a t  hypersonic speeds were discussed for the region far away from the 
blunt nose. These flows were called ‘asymptotic flows) since one method of 
analysing their structure is to attempt to construct theoretically an asymptotic 
expansion of the analytic solution. Consideration of the nature of the flows a t  
large distances from blunt bodies a t  hypersonic speed is by no means new (see, 
for example, the references contained in Freeman 1962) and many theoretical 
approaches to obtaining solutions have been made. Yakura (1962) has recently 
investigated the flow behind certain analytic shock shapes and draws conclusions 
which appear to contradict some of the basic tenets of the earlier work. It has 
become imperative, therefore, to examine in detail the nature of the mathe- 
matical expansion procedure which, it has been assumed, could be constructed 
from a first-order theory derived mainly from physical arguments. 

On reviewing the available literature it is obvious that there are many apparent 
anomalies in the theories as presented. Although, for example, it is well known 
that similarity solutions do exist, it is not obvious why they exist only for a 
limited range of body shapes. Also, there seems to be a tendency in the literature 
to perpetuate a belief that the error, which is introduced by assuming that the 
flow field for a blunt body is similar to that given by hypersonic small-disturbance 
theory, must be the same as that for the small disturbance theory when applied 
to slender bodies, viz. of order the inverse square of the Mach number. The 
part played by the nose bluntness in determining the form of the asymptotic 
flow depends on the asymptotic shape of the body. If the asymptotic growth is 
sufficiently rapid, it will itself determine the first-order asymptotic flow field and 
the nose bluntness then introduces only an entropy layer as a second-order 
effect. Mathematically, this means that the asymptotic flow field is determined 
by the surface boundary condition and the nose bluntness introduces an error 
term which is small over the major part of the field. If, however, the growth of 
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the body is slow, then the bluntness of the nose dominates even the asymptotic 
flow field, and, mathematically, the first term of the expansion is given by the 
blast-wave solution for a point source of constant energy. 

For more details of the theoretical solution of the problem the reader is referred 
to the review and analysis given in Freeman (1962). In  order to substantiate 
the method of expansion suggested it is strictly necessary to answer many 
questions as to the convergence and existence of the iterative procedure employed. 
The complexity of the problem would, a t  present, seem to make such considera- 
tions difficult. A situation of this type is, of course, not new in gas dynamics. 
One method of approach which can be applied in such cases is to verify some 
aspect of the theory by experimental measurements in order to show that a t  
least the first terms in the expansion are correct. 

Some of the limitations on the experimental confirmation of the theory will 
be discussed below. The apparent simplicity of some of the foundations for the 
theory, however, would seem to make it worth while to design an experiment 
which could be analysed in such a way as to test one of the basic assumptions of 
the theory . 

The simplest experimental technique is to photograph the shock-wave shape 
on a variety of bodies. Although the theory is essentially only concerned with 
asymptotic flows the grosser features of the nose-geometry of the body are shown 
to influence the results. The most satisfactory method of selecting bodies which 
grow asymptotically as a power of the distance is to take the complete power- 
law shapes themselves. These bodies will be blunt provided that the power is less 
than unity. 

The theory states that, asymptotically, for bodies of the form yccxmb, the 
shock is given by y cc xms where 

m,=m, for 4 < mb < 1, (1) 
ms= k for 0 < rnb < 4, ( 2 )  

where k = 2 / ( 3  +j) with j = 0 for plane flow and j = 1 for axisymmetric flow. 
Since we shall only be concerned with axisymmetric flow, k = 4. In  case 1, 
similarity solutions in the form suggested by Lees & Kubota (1957) are available 
and in case 2 the solution is given by ‘blast-wave analogy’ as postulated by 
Lees (1956) and Cheng & Pallone (1956). 

The author is not aware that tests have been made to verify the above hypo- 
thesis except for the original experiments of Kubota made to check case 1. 
The tests to be described in the present paper were carried out in the N.P.L. 
6 in. shock tunnel. A series of models were constructed to cover the whole range 
of 0 < m Q 1 in the axisymmetric case. The models were complete power-law 
shapes with m., = 0, &, +,$, $ and 1. Their length (1) was in all cases 6 in. and their 
base diameter (3 r )  3 in. 

2. Results 
Shadowgraphs of the flow past the model were taken a t  a flow Mach number 

(M,) of 8.8 and a Reynolds number of 3 x 106 per ft. The shock-wave shape was 
then obtained directly by constructing a system of ordinates on an enlarged 
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photographic print. The shock-wave shapes obtained from the various bodies are 
plotted in figure 2 and a series of typical photographs shown in figure 1, plate 1. 
A curve of shock shape for the condition mb = 0 taken from the Princeton helium 
tunnel results for M ,  = 12, is also given on figure 3. 

Since figure 2 is plotted logarithmically, the slope of the curves gives the ex- 
ponent (m,) directly. It is apparent that over the range shown there is a consider- 
able variation of the exponent with downstream distance on all the curves 
except for the cone (mb = 1).  

To compare these results with those predicted by the theoretical model it is 
necessary to eliminate the effect of the higher-order terms in the expansion. 

These terms originate from two main assumptions. The analogy between two- 
dimensional steady flow and one-dimensional unsteady flow will only be a useful 
one if M;2 is sufficiently small. This requirement can, in general, be easily met. 
A more stringent condition is imposed by the error terms introduced by the 
region near the body where the first-order solution is not uniformly convergent. 
An analysis of the flow in this neighbourhood (Freeman 1962) shows that these 
terms will be of order (M;2)a  where 

and 
CI = 1-2m,, for 8 > mb > 1/27, 
a = 1 - l /y  1/2y > mb > 0. for 
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Relations (3) and ( 5 )  are due to entropy-layer effects and the relation (4) to 
body displacement. As will be seen this error can become quite large. In  par- 
ticular for the case m, = +, i t  becomes dominant-a sign presumably that the 
similarity analysis is no longer adequate. 

I n  order to remain within the domain where similarity solutions are available 
we require that x’ = (x/Z) N;1/ (1-m~)  be small, with, a t  the same time, x/Z large 
to preserve the asymptotic nature of the solution. This criterion is difficult 
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FIGIJRE 3. Shock exponent m, plot,ted against body exponent) nhh. +, Experimcnt 
(lMm = 8.8, nitrogen); 0, Yakura (theoretical); - , theory; 0, Princeton (Mm = 12, 
helium) : A, Kiibota (ill, = 7.7 ,  air) ; I, variation between x/Z = 0.2 and 1.0. 

to satisfy since if f i t s  is to be evaluated from the experimental results a t  a fixed 
x‘ i t  will be obvious that the actual position of measurement x must vary for 
different bodies (i.e. values of m,). This variation can be very large indeed. 
For example, with tests a t  M ,  = 8.8, the measurement must be made a t  a dis- 
tance almost eighty times as far downstream for a body with m, = $ as for 
one withm, = 8.  This is almost impossible to achieve experimentally. 

Some compromise must be made in assessing these results. It was decided 
therefore to choose a particular value of xjl which is only strictly adequate 
where m, does not vary with mb (equation ( 2 ) )  and measure the slope from 
figure 2 .  These are plotted for xjl = 0.5 in figure 3 and the magnitude of the 
variation over this range 0.2 < ~ ~ 1 1  < 1.0 is indicated. As might be expected the 
points fall on a smooth curve. The other points inserted are due to Kubota 
(1957) who measured the exponent for m, = 5 and $ to confirm the similarity 
solutions of Lees & Kubota (1957). Although the agreement was stated to bc 
satisfactory, a close examination of the experimental results indicates that the 
slope has to be chosen judiciously to achieve this agreement and some deviation 
is obtained-although, in fact, it seems somewhat less than that obtained 
in the present tests. Kubota’s bodies were of length-to-diameter ratio 1 and 2 
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compared with a value of 3 in the present tests. The models used by Kubota 
are thus not so slender as the N.P.L. ones. A further result plotted is that 
obtained at M ,  = 12 in the Princeton helium tunnel for mb = 0. The present 
review of asymptotic hypersonic flows (Freeman 1962) was originally initiated 
to investigate some results obtained by Yakura (1962) when considering the 
analytic solution of the inverse problem, which assumes a given shock-wave shape. 
Pakura obtained the body shape required for flow through a hyperboloidal 
shock wave (m, = 1) and a paraboloidal shock (m, = 4). These points are plotted 
on figure 3. Form, = 4, an asymptotic body shape with m, = 1/2y was obtained. 
This led Yakura to conjecture that for m, = 0, m, should be 0.46 as indicated in 
figure 3. No suggestion is made as to the type of behaviour to be expected between 
these values. 

It is unfortunate that the experimental evidence is not able to distinguish 
between the two theories. It seems possible, however, that where the theory 
gives a large error term a slower convergence of the expansion would result and 
a consequent modification of the parameters in a similarity analysis would occur. 
These would almost certainly tend to smooth out the discrete changes suggested 
by theory. If such is the case, then it will probably be impossible to use experi- 
mental results to elucidate the theoretical approach. The difference between 
specifying an analytic shock shape or an analytic body shape may mean that a 
radical change is required in the mathematical expansion but need not necessarily 
mean that the final numerical values are greatly different. This would account for 
the smoothness of the variation with mb of the experimental results which do not 
appear to be very sensitive to small perturbations of body shape (i.e. of ma). 

3. Experimental errors 
Aside from the difficulties of comparison between theory and experiment 

discussed in $3,  there are obvious errors introduced by the experimental pro- 
cedure itself. The tests were made in a conical nozzle and hence Mach-number 
gradients would be obtained along the model. These are known to be quite small, 
however. The Mach number remains within 1 of its stated value throughout the 
region where measurements have been made. The extremely good conical 
shocks obtained on the cone confirms this. Boundary-layer growth on models of 
this length could also produce a displacement effect which would tend to distort 
the actual body shape and make it difficult to compare with a power-law theory. 
This effect is also very small as was confirmed by repeating the tests a t  a higher 
Reynolds number. Increasing the Reynolds number by a factor of two produced 
an effect hardly discernable on figure 3. 

Refraction effects, causing an apparent displacement of the shock wave relative 
to  the model, would also occur due to the use of the shadowgraph technique 
although these might be expected to be quite small since the bodies are axisym- 
metric. The maximum absolute error in determining the shock-wave ordinate 
from a photograph is of the order of 2 "/o. Since, however, the exponent only is 
required, the relative error between points, which would be considerably smaller 
than this, is more relevant. This can be minimized by measuring to a particular 
part of the finite-thickness image of the shock wave on the photograph. 
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4. Conclusions 
The experiments show, that, analysed on a similarity basis, the shock-wave 

shapes change uniformly with nz over the range 0 6 m < 1. This result might 
have been expected, since any abrupt changes required by the theory might be 
expected to have been smoothed out by the slower convergence of the expansion 
procedure in this neighbourhood. Although the experimental results indicate 
the basic trend suggested by theory, they do not allow any quantitative 
information, such as might be required to differentiate between two theories, 
to be deduced. It would appear that calculation of the higher-order terms in 
the expansion procedure would be necessary before any closer correlation of 
theory and experiment could be usefully made. As has been stated elsewhere, 
this is a formidable task but one which would greatly enhance our under- 
standing of the factors influencing the development of hypersonic flows. 
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